Abstract

This paper estimates the blow-up time for the heat equation ut=Δu with a local nonlinear Neumann boundary condition: The normal derivative ∂u/∂n=uq on Γ1, one piece of the boundary, while on the rest part of the boundary, ∂u/∂n=0. The motivation of the study is the partial damage to the insulation on the surface of space shuttles caused by high speed flying subjects. We show the finite time blow-up of the solution and estimate both upper and lower bounds of the blow-up time in terms of the area of Γ1. In many other work, they need the convexity of the domain Ω and only consider the problem with Γ1=∂Ω. In this paper, we remove the convexity condition and only require ∂Ω to be C2. In addition, we deal with the local nonlinearity, namely Γ1 can be just part of ∂Ω.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.