Abstract

The existence of weak solutions and upper bounds for the blow-up time for time-discrete parabolic-elliptic Keller-Segel models for chemotaxis in the two-dimensional whole space are proved. For various time discretizations, including the implicit Euler, BDF, and Runge-Kutta methods, the same bounds for the blow-up time as in the continuous case are derived by discrete versions of the virial argument. The theoretical results are illustrated by numerical simulations using an upwind finite-element method combined with second-order time discretizations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call