Abstract

We study a kind of nonlinear wave equations with damping and potential, whose coefficients are both critical in the sense of the scaling and depend only on the spatial variables. Based on the earlier works, one may think there are two kinds of blow-up phenomenons when the exponent of the nonlinear term is small. It also means there are two kinds of law to determine the critical exponent. In this paper, we obtain a blow-up result and get the estimate of the upper bound of the lifespan in critical and sub-critical cases. All of the results support such a conjecture, although for now, the existence part is still open.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.