Abstract
This paper concerns the study of the numerical approximation for the following parabolic equations with a nonlinear convection term $$\\ \left\{% \begin{array}{ll} \hbox{$u_t(x,t)=u_{xx}(x,t)-g(u(x,t))u_{x}(x,t)+f(u(x,t)),\quad 0<x<1,\; t>0$,} \\ \hbox{$u_{x}(0,t)=0, \quad u_{x}(1,t)=0,\quad t>0$,} \\ \hbox{$u(x,0)=u_{0}(x) > 0,\quad 0\leq x \leq 1$,} \\ \end{array}% \right. $$ \newline where $f:[0,+\infty)\rightarrow [0,+\infty)$ is $C^3$ convex, nondecreasing function,\\ $g:[0,+\infty)\rightarrow [0,+\infty)$ is $C^1$ convex, nondecreasing function,\newline $\displaystyle\lim_{s\rightarrow +\infty}f(s)=+\infty$, $\displaystyle\lim_{s\rightarrow +\infty}g(s)=+\infty$, $\displaystyle\lim_{s\rightarrow +\infty}\frac{f(s)}{g(s)}=+\infty$\newline and $\displaystyle\int^{+\infty}_{c}\frac{ds}{f(s)}<+\infty$ for $c>0$. We obtain some conditions under which the solution of the semidiscrete form of the above problem blows up in a finite time and estimate its semidiscrete blow-up time. We also prove that the semidiscrete blow-up time converges to the real one, when the mesh size goes to zero. Finally, we give some numerical results to illustrate ours analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.