Abstract

The behaviour of solutions for a non-linear diffusion problem is studied. A subordination principle is applied to obtain the variation of parameters formula in the sense of Volterra equations, which leads to the integral representation of a solution in terms of the fundamental solutions. This representation, the so-called mild solution, is used to investigate some properties about continuity and non-negativeness of solutions as well as to prove a Fujita type blow-up result. Fujita’s critical exponent is established in terms of the parameters of the stable non-Gaussian process and a result for global solutions is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.