Abstract
In this paper, we investigate some sufficient conditions for the breakdown of local smooth solutions to the three dimensional nonlinear nonlocal dissipative system modeling electro-hydrodynamics. This model is a strongly coupled system by the well-known incompressible Navier–Stokes equations and the classical Poisson–Nernst–Planck equations. We show that the maximum of the vorticity field alone controls the breakdown of smooth solutions, which reveals that the velocity field plays a more dominant role than the density functions of charged particles in the blow-up theory of the system. Moreover, some Prodi–Serrin type blow-up criteria are also established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.