Abstract
We consider a nonnegative solution $u$ of the Cauchy problem for a quasilinear parabolic equation $u_t=\Delta u^m+\mu(x)u^p$ with the initial data $u_0(x)\,(\not\equiv 0)$ satisfying $\| \tilde\mu u_0\|_{L^{\infty}(\mathbf R^N)}<\infty$, where nonnegative function $\mu(x)$ satisfies some condition and $\tilde\mu=\mu^{1/(p-1)}$. We give sufficient conditions on $u_0$ for a weighted solution $\tilde\mu u$ to blow up at space infinity and for a direction $\psi \in \mathbf S^{N-1}$ to be a blow-up direction of $\tilde\mu u$. We also show that such a weighted solution $\tilde\mu u$ blows up completely at the blow-up time of $\tilde\mu u$.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.