Abstract

In this paper we study a kinetic equation that describes swarm formations. The right-hand side of this equation contains nonlinear integro-differential terms responsible for two opposite tendencies: dissipation and swarming. The nonlinear integral operator describes the changes of velocities (orientations) of interacting individuals. The interaction rate is assumed to be dependent of velocities of interacting individuals. Although the equation seems to be rather simple it leads to very complicated dynamics. In this paper, we study possible blow-ups versus global existence of solutions and provide results on the asymptotic behavior. The complicated dynamics and possibility of blow-ups can be directly related to creation of swarms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.