Abstract

In the mammalian testis, the blood-testis barrier (BTB), unlike the blood-brain and blood-retina barriers, is composed of coexisting tight junctions (TJs) and adherens junctions (AJs). Yet these junctions must open (or disassemble) to accommodate the migration of preleptotene and leptotene spermatocytes across the BTB during spermatogenesis while maintaining its integrity. In this report, we show that the BTB utilizes a unique "engagement" and "disengagement" mechanism to permit the disruption of AJ that facilitates germ cell movement without compromising the BTB integrity. For instance, both TJ (e.g., occludin and JAM-1) and AJ (e.g., N-cadherin) integral membrane proteins were colocalized to the same site at the BTB. Although these TJ- and AJ-integral membrane proteins did not physically interact with each other, they were structurally linked by means of peripheral adaptors (e.g., ZO-1 and alpha- and gamma-catenins). As such, these proteins are structurally "engaged" under physiological conditions to reinforce the BTB. When rats were exposed to Adjudin to induce AJ restructuring that eventually led to germ cell loss from the epithelium, this structural interaction between occludin and N-cadherin by means of their adaptors became "disengaged" while their protein levels were significantly induced. In short, when the epithelium is under assault, such as by Adjudin or plausibly at the time of germ cell migration across the BTB during spermatogenesis, the TJ- and AJ-integral membrane proteins can be disengaged. Thus, this mechanism is used by the testis to facilitate AJ restructuring to accommodate germ cell migration while maintaining the BTB integrity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.