Abstract

Neuronal activation results in increases in blood-oxygen-level-dependent (BOLD) signal increases in magnetic resonance images, increases in cerebral blood flow (CBF), and changes in tissue oxygenation. We hypothesized that transient hypertension concurrent with neuronal activation would interfere with the normal physiological responses to neuronal activation potentially leading to additive responses. Anesthetized rats were prepared for functional magnetic resonance imaging studies in which increases in BOLD signal were measured in response to: (1) electrical forepaw stimulation, (2) different graded levels of transient hypertension produced with norepinephrine, and both 1 and 2. In other experiments with a similar protocol, changes in CBF and cortical oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) were measured using Laser Doppler Flowmetry and near-infrared (IR) spectroscopy. BOLD signal within the sensory-motor cortex increased during forepaw stimulation. These matched increases in CBF and oxyHb and decreases in deoxyHb. During moderate or severe transient hypertension, there was a blood pressure-dependent increase in BOLD signal, CBF, and oxyHb; and a decrease in deoxyHb. When transient hypertension and forepaw stimulation were combined, the responses of oxyHb, deoxyHb, or BOLD signal were generally a summation of each response. In contrast, the CBF response to forepaw stimulation was relatively unaffected by transient hypertension. We conclude that during stimulation with concurrent hypertension, the normal changes in tissue oxygenation that accompany neuronal activation are enhanced by the increases produced by hypertension despite an excellent autoregulation of CBF. The latter could reflect highly transient decreases in oxygen consumption or likely a redistribution of flow through more nonexchange vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.