Abstract

Background and Objective: The classification of human peripheral blood cells yields significance in the detection of inflammation, infections and blood cell disorders such as leukemia. Limitations in traditional algorithms for blood cell classification and increased computational processing power have allowed machine learning methods to be utilized for this clinically prevalent task.Methods: In the current work, we present BloodCaps, a capsule based model designed for the accurate multiclassification of a diverse and broad spectrum of blood cells.Results: Implemented on a large-scale dataset of 8 categories of human peripheral blood cells, the proposed architecture achieved an overall accuracy of 99.3%, outperforming convolutional neural networks such as AlexNet(81.5%), VGG16(97.8%), ResNet-18(95.9%) and InceptionV3(98.4%). Furthermore, we devised three new datasets(low-resolution dataset, small dataset, and low-resolution small dataset) from the original dataset, and tested BloodCaps in comparison with AlexNet, VGG16, ResNet-18, and InceptionV3. To further validate the applicability of our proposed model, we tested BloodCaps on additional public datasets such as the All IDB2, BCCD, and Cell Vision datasets. Compared with the reported results, BloodCaps showed the best performance in all three scenarios.Conclusions: The proposed method proved superior in octal classification among all three datasets. We believe the proposed method represents a promising tool to improve the diagnostic performance of clinical blood examinations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.