Abstract

Skeletal muscle fibers contain hundreds to thousands of nuclei which lie immediately under the plasmalemma and are spaced out along the fiber, except for a small cluster of specialized nuclei at the neuromuscular junction. How the nuclei attain their positions along the fiber is not understood. Here we show that the nuclei are preferentially localized near blood vessels (BV), particularly in slow-twitch, oxidative fibers. Thus, in rat soleus muscle fibers, 81% of the nuclei appear next to BV. Lack of desmin markedly perturbs the distribution of nuclei along the fibers but does not prevent their close association with BV. Consistent with a role for desmin in the spacing of nuclei, we show that denervation affects the organization of desmin filaments as well as the distribution of nuclei. During chronic stimulation of denervated muscles, new BV form, along which muscle nuclei align themselves. We conclude that the positioning of nuclei along muscle fibers is plastic and that BV and desmin intermediate filaments each play a distinct role in the control of this positioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.