Abstract

BackgroundThe condition of COVID-19-related myocarditis has emerged as a prominent contributor to COVID-19 mortality. As the epidemic persists, its incidence continues to rise. Despite ongoing efforts, the elucidation of COVID-19-related myocarditis underlying molecular mechanisms still requires further investigation. MethodsHub genes for COVID-19-related myocarditis were screened by integrating gene expression profile analysis via differential expression in COVID-19 (GSE196822) and myocarditis (GSE148153 and GSE147517). After verification with independent datasets (GSE211979, GSE167028, GSE178491 and GSE215865), the hub genes were studied using a range of systems-biology approaches, such as ceRNA, TF-mRNA networks and PPI networks, as well as gene ontology, pathway enrichment, immune infiltration analysis and drug target identification. ResultsTBKBP1 and ERGIC1 were identified as COVID-19-related myocarditis hub genes via integrated bioinformatics analysis. In addition, receiver operating characteristic curves constructed based on the expression levels of TBKBP1 and ERGIC1 could effectively distinguish healthy control individuals from patients with COVID-19. Functional enrichment analysis suggested several enriched biological pathways related to inflammation and immune response. Immune cell changes correlated with TBKBP1 and ERGIC1 levels in patients with COVID-19 or patients with COVID-19 and myocarditis. Tamibarotene, methotrexate and theophylline were identified as a potential drug targeting TBKBP1 and ERGIC1. ConclusionTBKBP1 and ERGIC1 were identified as crucial genes in the development of COVID-19-related myocarditis and have demonstrated a strong association with innate antiviral immunity. The present work may be helpful for further investigation of the molecular mechanisms and new therapeutic drug targets correlated with myocarditis in COVID-19.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.