Abstract

Identifying cerebral vulnerability in late life is of paramount importance to prevent pathological trajectories of aging before the onset of symptoms. Considerable evidence suggests that impaired antioxidant mechanisms are a fingerprint of aging-related conditions, but there is a lack of human research linking total antioxidant capacity (TAC) measured in peripheral blood to in vivo brain changes and other factors featuring accelerated aging. To address this issue, we have assessed in cognitively normal elderly subjects (N = 100) correlations between serum TAC, using the oxygen radical absorbance capacity assay, surface-based cortical thickness, surface-based 18F-fluorodeoxyglucose positron emission tomography cortical uptake, and different factors associated with accelerated aging [i.e., serum homocysteine (HCY), self-reported memory problems, and self-reported patterns of physical activity]. While no relationship was observed between serum TAC and variations in cortical thickness, decreased TAC level was significantly associated with lower FDG uptake in temporal lobes bilaterally. Remarkably, decreased TAC level was linked to increased HCY concentrations, moresubjective memorycomplaints, and lower frequency of physical activity. Overall, our results suggest that decreased serum TAC level may be helpful to detect vulnerable trajectories of aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call