Abstract
This study investigated the mechanism of transporting imperatorin across the inner blood-retinal barrier (iBRB). The carotid artery single injection method was used to calculate the retinal uptake index (RUI) of [3H]imperatorin in vivo, whereas the retinal capillary endothelial cell lines were used for the in vitro uptake and mRNA expression assays. RUI value of [3H]imperatorin was greater than that of the reference compound ([14C]n-butanol). [3H]Imperatorin significantly reduced the RUI in the presence of neuroprotective organic cationic drugs at 10 mM. However, tetraethylammonium and p-aminohippuric acid showed no significant effects. [3H]Imperatorin uptake by TR-iBRB2 cells was time-, pH-, energy-, and concentration-dependent with a Km value of 679 ± 130 μM. In addition, the uptake study showed insensitivity to sodium and membrane potential. Various organic cations including pyrilamine, nicotine, and clonidine significantly reduced the uptake of [3H]imperatorin, whereas organic anions and monocarboxylic acids did not. Furthermore, the mRNA expression level dropped markedly with rOCTN1, rOCTN2, rPMAT, and rMATE1 small interfering RNAs in the transfection study. Moreover, [3H]imperatorin uptake remained neutral with small interfering RNA transfections. Our results indicate that imperatorin transport across the iBRB involves carrier-mediated transporter system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.