Abstract

During COVID-19, blood demand exceeded pre-pandemic levels due to reduced donations, causing shortages. Given the severe shortage, it's crucial to optimise blood use, prevent shortages, minimise wastage, and reduce unnecessary transfusions in all hospitalised patients. Designing a reliable blood supply chain network (BSCN) is an effective solution, especially for COVID-19 patients. This strategic decision significantly impacts emergency management performance. An efficient and reliable blood supply chain requires the consideration of multiple factors, including scarceness and perishability of blood, simultaneously. However, existing studies have not addressed all relevant factors in an integrated blood supply chain, and this paper aims to bridge this gap. Furthermore, an efficient Benders Decomposition based heuristic approach is proposed to solve the model. The solution approach has been compared with a set of commonly used meta-heuristic algorithms, including the red deer algorithm (RDA), tree growth algorithm (TGA), and genetic algorithm (GA). The outcomes illustrate that the proposed heuristic approach can solve small and large-size problems in significantly less CPU time than the other proposed solution approaches. For large-size problems, it can reduce the average CPU time by about 80% compared to TGA, about 80% compared to GA, and about 83% compared to RDA. A real case study has been implemented to validate the proposed mathematical model and solution method. The sensitivity analysis has been conducted to validate the significance of the model's parameters; consequently, several managerial insights have been derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.