Abstract

Extracorporeal membrane oxygenation (ECMO) is a therapy used in severe cardiopulmonary failure. Blood is pumped through an artificial circuit exposing it to nonphysiologic conditions, which promote platelet activation and coagulation. Centrifugal pumps used at lower flow rates than their design point may lose pump efficiency and increase the risk of hemolysis. In this study, thrombogenic properties of two ECMO pumps designed for adult and neonatal use were evaluated using simulations in different flow scenarios. Three scenarios, adult pump in adult mode (4 L/min), adult pump in baby mode (300 ml/min), and neonatal pump used in its design point (300 ml/min), were simulated using computational fluid dynamics. The flow was numerically seeded with platelets, whose activation state was computed considering the stress history that acted along their respective path lines. Statistical distributions of activation state and residence time were drawn. The results showed that using the adult pump in baby mode increased the fraction of platelets with higher activation state confirming that low-pump flow rate impacts thrombogenicity. The neonatal pump showed a backflow at the inlet, which carried platelets in a retrograde motion contributing to an increased thrombogenic potential compared with the adult mode scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.