Abstract

BackgroundTrauma is the leading cause of loss of life expectancy worldwide. In the most seriously injured patients, coagulopathy is often present on admission. Therefore, transfusion strategies to increase the ratio of plasma (FFP) and platelets (PLT) to red blood cells (RBC), simulating whole blood, have been introduced. Several studies report that higher ratios improve survival in massively bleeding patients. Here, the aim was to investigate the potential effect of increased FFP and PLT to RBC on mortality in trauma patients.MethodsIn a retrospective before and after study, all trauma patients primarily admitted to a level-one Trauma Centre, receiving blood transfusion, in 2001-3 (n = 97) and 2005-7 (n = 156), were included. In 2001-3, FFP and PLT were administered in accordance with the American Society of Anesthesiologists (ASA) guidelines whereas in 2005-7, Hemostatic Control Resuscitation (HCR) entailing pre-emptive use of FFP and PLT in transfusion packages during uncontrolled haemorrhage and thereafter guided by thrombelastograph (TEG) analysis was employed. The effect of transfusion therapy and coagulopathy on mortality was investigated.ResultsPatients included in the early and late period had comparable demography, injury severity score (ISS), admission hematology and coagulopathy (27% vs. 34% had APTT above normal). There was a significant change in blood transfusion practice with shorter time interval from admission to first transfusion (median time 3 min vs.28 min in massive bleeders, p < 0.001), transfusion of higher ratios of FFP:RBC, PLT:RBC and PLT:FFP in the HCR group but 30-day mortality remained comparable in the two periods. In the 2005-7 period, higher age, ISS and Activated Partial Thromboplastin Time (APTT) above normal were independent predictors of mortality whereas no association was fund between blood product ratios and mortality.ConclusionAggressive administration of FFP and PLT did not influence mortality in the present trauma population.

Highlights

  • Hemorrhage leading to massive transfusion remains a major cause of potentially preventable deaths [1]

  • The concept of Hemostatic Control Resuscitation (HCR), i.e., providing large transfusions to critically injured patients in an immediate and sustained manner as part of a massive transfusion protocol, has been introduced, with wide implementation of the concept of damage control [3,5]. The rationale behind this hemostatic resuscitation concept is that circulating whole blood contains red blood cells, plasma, and platelets at a 1:1:1 ratio, and transfusion of plasma and platelets in an appropriate unit-for-unit ratio has been proposed as a way to both prevent and treat coagulopathy due to massive hemorrhage

  • HCR was introduced including the following services: (i) transfusion packages comprising 5 units of red blood cells (RBC) stored in saline-adenineglucose-manitol (SAGM) for a maximum of 15 days, 5 units of fresh frozen plasma (FFP) and 2 units of PLT, to be used before the results of the TEG analysis was available; (ii) storage of thawed, ready-to-use FFP in the blood bank for a maximum of 72 h; (iii) continuous monitoring of the blood transfusion therapy in patients receiving more than 10 RBCs within 24 h; (iv) protocol for monitoring of haemostatic competence with TEG and an intervention algorithm for treatment with FFP and PLT based on the results of the analysis (Appendix 1); and (v) educational program for anesthesiologists concerning functional hemostasis and TEG

Read more

Summary

Introduction

Hemorrhage leading to massive transfusion remains a major cause of potentially preventable deaths [1]. The concept of Hemostatic Control Resuscitation (HCR), i.e., providing large transfusions to critically injured patients in an immediate and sustained manner as part of a massive transfusion protocol, has been introduced, with wide implementation of the concept of damage control [3,5]. The rationale behind this hemostatic resuscitation concept is that circulating whole blood contains red blood cells, plasma, and platelets at a 1:1:1 ratio, and transfusion of plasma and platelets in an appropriate unit-for-unit ratio has been proposed as a way to both prevent and treat coagulopathy due to massive hemorrhage. The aim was to investigate the potential effect of increased FFP and PLT to RBC on mortality in trauma patients

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.