Abstract

Signal-averaged sympathetic transduction of blood pressure (BP) is inversely related to resting muscle sympathetic nerve activity (MSNA) burst frequency in healthy cohorts. Whether this represents a physiological compensatory adaptation or a methodological limitation, remains unclear. The current analysis aimed to determine the contribution of methodological limitations by evaluating the dependency of MSNA transduction at different levels of absolute BP. Thirty-six healthy participants (27 ± 7 yr, 9 females) underwent resting measures of beat-to-beat heart rate, BP, and muscle sympathetic nerve activity (MSNA). Tertiles of mean arterial pressure (MAP) were computed for each participant to identify cardiac cycles occurring below, around, and above the MAP operating pressure (OP). Changes in hemodynamic variables were computed across 15 cardiac cycles within each MAP tertile to quantify sympathetic transduction. MAP increased irrespective of sympathetic activity when initiated below the OP, but with MSNA bursts provoking larger rises (3.0 ± 0.9 vs. 2.1 ± 0.7 mmHg; P < 0.01). MAP decreased irrespective of sympathetic activity when initiated above the OP, but with MSNA bursts attenuating the drop (-1.3 ± 1.1 vs. -3.1 ± 1.2 mmHg; P < 0.01). In participants with low versus high resting MSNA (12 ± 4 vs. 32 ± 10 bursts/min), sympathetic transduction of MAP was not different when initiated by bursts below (3.2 ± 1.0 vs. 2.8 ± 0.9 mmHg; P = 0.26) and above the OP (-1.0 ± 1.3 vs. -1.6 ± 0.8 mmHg; P = 0.08); however, low resting MSNA was associated with a smaller proportion of MSNA bursts firing above the OP (15 ± 5 vs. 22 ± 5%; P < 0.01). The present analyses demonstrate that the signal-averaging technique for calculating sympathetic transduction of BP is influenced by the timing of an MSNA burst relative to cyclic oscillations in BP.NEW & NOTEWORTHY The current signal-averaging technique for calculating sympathetic transduction of blood pressure does not consider the arterial pressure at which each muscle sympathetic burst occurs. A burst firing when mean arterial pressure is above the operating pressure was associated with a decrease in blood pressure. Thus, individuals with higher muscle sympathetic nerve activity demonstrate a reduced sympathetic transduction owing to the weighted contribution of more sympathetic bursts at higher levels of arterial pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call