Abstract

Short cell penetrating peptides (CPP) are widely used in vitro to transduce agents into cells. But their systemic effect has not been yet studied in detail. We studied the systemic effect of the cell penetrating peptides, penetratin, transportan and pro-rich, on rat hemodynamic functions. Intra-arterial monitoring of blood pressure showed that injection of the positively charged penetratin and transportan in a wide range of concentrations (2.5–320 μg/kg) caused highly significant transient decrease in the systolic and diastolic blood pressure in a dose dependent manner ( p < 0.01). Pretreatment with histamine receptors blockers or with cromolyn, a mast cell stabilizing agent, significantly attenuated this effect. Furthermore, in vitro incubation of these both peptides with mast cells line, LAD2, caused a massive mast cell degranulation. In vitro studies showed that these CPP in a wide range of concentrations were not cytotoxic without any effect on the survival of LAD2 mast cell line. In contrast, the less positively charged and proline-rich CPP, pro-rich, had no systemic effects with no effect on mast cell degranulation. Our results indicate that intravenously administrated positively charged CPP may have deleterious consequences due to their induced BP drop, mediated by mast cell activation. Therefore, the major effect of mast cell activation on BP should be considered in developing possible future drug therapies based on the injection of membrane-permeable and positively charged CPP. Nevertheless, lower levels of such CPP may be considered as a treatment of systemic high BP through moderate systemic mast cell activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.