Abstract

Simple SummaryCancer is a disease that has a high fatality rate over the world. Nanotechnology is one of the most promising current approaches for developing novel diagnostic and treatment methods in accomplishing more personalized medicine. Personalized gold nanoclusters have potential to be used in cancer theranostics. We demonstrate that biocompatible gold nanoclusters could be synthesized directly in human blood plasma. Such gold nanoclusters have a wide photoluminescence band in the optical tissue window and generate reactive oxygen species under irradiation with visible light, thus are suitable for cancer theranostics.Personalized cancer theranostics has a potential to increase efficiency of early cancer diagnostics and treatment, and to reduce negative side-effects. Protein-stabilized gold nanoclusters may serve as theranostic agents. To make gold nanoclusters personalized and highly biocompatible, the clusters were stabilized with human plasma proteins. Optical properties of synthesized nanoclusters were investigated spectroscopically, and possible biomedical application was evaluated using standard cell biology methods. The spectroscopic investigations of human plasma proteins stabilized gold nanoclusters revealed that a wide photoluminescence band in the optical tissue window is suitable for cancer diagnostics. High-capacity generation of singlet oxygen and other reactive oxygen species was also observed. Furthermore, the cluster accumulation in cancer cells and the photodynamic effect were evaluated. The results demonstrate that plasma proteins stabilized gold nanoclusters that accumulate in breast cancer cells and are non-toxic in the dark, while appear phototoxic under irradiation with visible light. The results positively confirm the utility of plasma protein stabilized gold nanoclusters for the use in cancer diagnostics and treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call