Abstract

The study of physiological changes recorded by wearable devices during physical exercises belongs to very important research topics in neurology for the detection of motion disorders or monitoring of the fitness level during sports activities. This paper contributes to this area with studies of the effect of face masks and respirators on blood oxygen concentration, breathing frequency, and the heart rate changes. Experimental data sets include 296 segments of their total length of 60 hours, recorded on a home exercise bike under different motion conditions. Wearable instruments with oximetric, heart rate, accelerometric, and thermal camera sensors were used to fill the own database of signals recorded with selected sampling frequencies. The proposed methodology includes fundamental signal and image processing methods for signal analysis and machine learning tools for labeling image components and detecting facial temperature changes. Results show the minimal effect of mask wearing on blood oxygen concentration but its substantial influence on the breathing frequency and the heart rate. The use of a respirator substantially increased the respiratory rate for the given set of experiments under the load. This indicates how wearable sensors, computational intelligence, and machine learning can be used for motion monitoring and data analysis of signals recorded in different conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call