Abstract

To investigate mechanisms underlying cartilage damage caused by brief exposure of cartilage to blood, such as that occurring during intraarticular bleeding. Human articular cartilage was cultured for 4 days in the presence of blood (components; 7.5-50% volume/volume). The synthesis of cartilage matrix, as determined by proteoglycan synthesis (incorporation of 35SO4(2-)), was measured directly after exposure and after a recovery period of 20 days, during which the cartilage was cultured in the absence of blood or blood components. The production of the cytokines interleukin-1 (IL-1) and tumor necrosis factor a (TNFalpha), which have a destructive effect on cartilage, was determined by enzyme-linked immunosorbent assay, and the viability of chondrocytes was determined by measuring lactate dehydrogenase release and with electron microscopy. The involvement of oxygen metabolites was evaluated by using N-acetylcysteine. Brief exposure to blood resulted in dose-dependent inhibition of proteoglycan synthesis. The combination of mononuclear cells and red blood cells was responsible for this effect. The effect was irreversible, independent of IL-1 and TNFalpha production, and was accompanied by chondrocyte death. These effects were partially prevented by N-acetylcysteine. Brief exposure of cartilage to blood, as occurs after a single episode or a limited number of bleeding episodes, results in lasting cartilage damage in vitro, in which cytotoxic oxygen metabolites play a role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.