Abstract

Blood group systems were the first phenotypic markers used in anthropology to decipher the origin of populations, their migratory movements, and their admixture. The recent emergence of new technologies based on the decoding of nucleic acids from an individual’s entire genome has relegated them to their primary application, blood transfusion. Thus, despite the finer mapping of the modern human genome in relation to Neanderthal and Denisova populations, little is known about red cell blood groups in these archaic populations. Here we analyze the available high-quality sequences of three Neanderthals and one Denisovan individuals for 7 blood group systems that are used today in transfusion (ABO including H/Se, Rh (Rhesus), Kell, Duffy, Kidd, MNS, Diego). We show that Neanderthal and Denisova were polymorphic for ABO and shared blood group alleles recurrent in modern Sub-Saharan populations. Furthermore, we found ABO-related alleles currently preventing from viral gut infection and Neanderthal RHD and RHCE alleles nowadays associated with a high risk of hemolytic disease of the fetus and newborn. Such a common blood group pattern across time and space is coherent with a Neanderthal population of low genetic diversity exposed to low reproductive success and with their inevitable demise. Lastly, we connect a Neanderthal RHD allele to two present-day Aboriginal Australian and Papuan, suggesting that a segment of archaic genome was introgressed in this gene in non-Eurasian populations. While contributing to both the origin and late evolutionary history of Neanderthal and Denisova, our results further illustrate that blood group systems are a relevant piece of the puzzle helping to decipher it.

Highlights

  • Over the last decade, technological progress has allowed generation of data from the entire genome of some fifteen extinct Neanderthal and Denisova hominins who lived 40,000 to 100,000 years ago from Western Europe to Siberia [1]

  • Detailed information for the blood group systems, genotypes and phenotypes as well as for other polymorphisms identified in these archaic hominins is presented in Tables 1 and 2 and the principal information is shown in Figs 1 and 2

  • We found the most common phenotypes present in modern human populations: A1, B and O resulting from the combination of 3 different alleles (Fig 1)

Read more

Summary

Introduction

Technological progress has allowed generation of data from the entire genome of some fifteen extinct Neanderthal and Denisova hominins who lived 40,000 to 100,000 years ago from Western Europe to Siberia [1]. It is routine practice to scrutinize six blood groups: ABO, Rh, Kell, Duffy, Kidd and MNS (reviewed in [10]) Despite their significance and the amount of available genotypic data on modern Humans that is continuously accumulating [11], almost no attention has been paid to these major red cell blood polymorphisms in palaeogenetic studies [12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call