Abstract

Normal blood [glucose] regulation is critical to support metabolism, particularly in contexts of metabolic stressors (e.g., exercise, high altitude hypoxia). Data regarding blood [glucose] regulation in hypoxia are inconclusive. We aimed to characterize blood [glucose] over 80 min following glucose ingestion during both normoxia and acute normobaric hypoxia. In a randomized cross‐over design, on two separate days, 28 healthy participants (16 females; 21.8 ± 1.6 years; BMI 22.8 ± 2.5 kg/m2) were randomly exposed to either NX (room air; fraction of inspired [FI]O2 ~0.21) or HX (FIO2 ~0.148) in a normobaric hypoxia chamber. Measured FIO2 and peripheral oxygen saturation were both lower at baseline in hypoxia (p < 0.001), which was maintained over 80 min, confirming the hypoxic intervention. Following a 10‐min baseline (BL) under both conditions, participants consumed a standardized glucose beverage (75 g, 296 ml) and blood [glucose] and physiological variables were measured at BL intermittently over 80 min. Blood [glucose] was measured from finger capillary samples via glucometer. Initial fasted blood [glucose] was not different between trials (NX:4.8 ± 0.4 vs. HX:4.9 ± 0.4 mmol/L; p = 0.47). Blood [glucose] was sampled every 10 min (absolute, delta, and percent change) following glucose ingestion over 80 min, and was not different between conditions (p > 0.77). In addition, mean, peak, and time‐to‐peak responses during the 80 min were not different between conditions (p > 0.14). There were also no sex differences in these blood [glucose] responses in hypoxia. We conclude that glucose regulation is unchanged in young, healthy participants with exposure to acute steady‐state normobaric hypoxia, likely due to counterbalancing mechanisms underlying blood [glucose] regulation in hypoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.