Abstract

Limb immobilization causes local vasculature to experience detrimental adaptations. Simple strategies to increase blood flow (heating, fidgeting) successfully prevent acute (≤ 1day) impairments; however, none have leveraged the hyperemic response over prolonged periods (weeks) mirroring injury rehabilitation. Throughout a 14-day unilateral limb immobilization, we sought to preserve vascular structure and responsiveness by repeatedly activating a reactive hyperemic response via blood flow restriction (BFR) and amplifying this stimulus by combining BFR with electric muscle stimulation (EMS). Young healthy adults (M:F = 14:17, age = 22.4 ± 3.7years) were randomly assigned to control, BFR, or BFR + EMS groups. BFR and BFR + EMS groups were treated for 30min twice daily (3 × 10min ischemia-reperfusion cycles; 15% maximal voluntary contraction EMS), 5 days/week (20 total sessions). Before and after immobilization, artery diameter, flow-mediated dilation (FMD) and blood flow measures were collected in the superficial femoral artery (SFA). Following immobilization, there was less retrograde blood velocity (+ 1.8 ± 3.6cms-1, P = 0.01), but not retrograde shear (P = 0.097). All groups displayed reduced baseline and peak SFA diameter following immobilization (- 0.46 ± 0.41mm and - 0.43 ± 0.39mm, P < 0.01); however, there were no differences by group or across time for FMD (% diameter change, shear-corrected, or allometrically scaled) nor microvascular function assessed by peak flow capacity. Following immobilization, our results reveal (1) neither BFR nor BFR + EMS mitigate artery structure impairments, (2) intervention-induced shear stress did not affect vascular function assessed by FMD, and (3) retrograde blood velocity is reduced at rest offering potential insight to mechanisms of flow regulation. In conclusion, BFR appears insufficient as a treatment strategy for preventing macrovascular dysfunction during limb immobilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.