Abstract

Ultrasonic pulse-echo systems can provide range-finding, time-position and real-time two-dimensional images of soft-tissue structures within the body. The Doppler effect can be used to study motion and blood flow. Continuous wave Doppler instruments provide information about velocity and direction of flow; depth discrimination can be obtained by pulsing the ultrasound. Two-dimensional Doppler flow imaging can be achieved by manual scanning of a probe over the skin surface. The combination of real-time pulse-echo imaging with pulsed Doppler blood flow detection in the duplex scanner makes it possible to localize the anatomical position of the Doppler sample volume. Real-time Doppler colour flow imaging combines traditional ultrasonic scanning with a two-dimensional flow map. Using appropriate ultrasonic instruments, blood flow volume rates, blood flow velocity profiles, pressure gradients, orifice areas, flow disturbances, jets, characteristics of blood vessels and the circulatory system, and tissue perfusion can all be investigated. These investigations have clinical applications in the study of cardiac, cerebral and peripheral blood flow, blood flow in the female pelvis, the fetus, the abdomen, the neonate, and in malignant tumours. Contemporary ultrasonic diagnosis employs exposure levels that are apparently free from biological risk, but other factors need to be taken into account in considering the prudent use of ultrasonic methods. Promising research is being carried out into the mechanism of ultrasonic scattering by blood, Doppler speckle, time-domain processing for blood flow imaging, methods for increasing the scanning speed, Doppler flow microscopy and contrast agents. The new technology that will result from this research should lead to further substantial progress in ultrasonic blood flow studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.