Abstract

The purpose of this study was to determine whether reduction in apparent muscle O2 diffusing capacity (Dmo2) calculated during reduced blood flow conditions in maximally working muscle is a reflection of alterations in blood flow distribution. Isolated dog gastrocnemius muscle (n = 6) was stimulated for 3 min to achieve peak O2 uptake (VO2) at two levels of blood flow (controlled by pump perfusion): control (C) conditions at normal perfusion pressure (blood flow = 111 +/- 10 ml.100 g-1.min-1) and reduced blood flow treatment [ischemia (I); 52 +/- 6 ml.100 g-1.min-1]. In addition, maximal vasodilation was achieved by adenosine (A) infusion (10(-2)M) at both levels of blood flow, so that each muscle was subjected randomly to a total of four conditions (C, CA, I, and IA; each separated by 45 min of rest). Muscle blood flow distribution was measured with 15-microns-diameter colored microspheres. A numerical integration technique was used to calculate Dmo2 for each treatment with use of a model that calculates O2 loss along a capillary on the basis of Fick's law of diffusion. Peak VO2 was reduced significantly (P < 0.01) with ischemia and was unchanged by adenosine infusion at either flow rate (10.6 +/- 0.9, 9.7 +/- 1.0, 6.7 +/- 0.2, and 5.9 +/- 0.8 ml.100 g-1.min-1 for C, CA, I, and IA, respectively). Dmo2 was significantly lower by 30-35% (P < 0.01) when flow was reduced (except for CA vs. I; 0.23 +/- 0.03, 0.20 +/- 0.02, 0.16 +/- 0.01, and 0.13 +/- 0.01 ml.100 g-1.min-1.Torr-1 for C, CA, I, and IA, respectively). As expressed by the coefficient of variation (0.45 +/- 0.04, 0.47 +/- 0.04, 0.55 +/- 0.03, and 0.53 +/- 0.04 for C, CA, I, and IA, respectively), blood flow heterogeneity per se was not significantly different among the four conditions when examined by analysis of variance. However, there was a strong negative correlation (r = 0.89, P < 0.05) between Dmo2 and blood flow heterogeneity among the four conditions, suggesting that blood flow redistribution (likely a result of a decrease in the number of perfused capillaries) becomes an increasingly important factor in the determination of Dmo2 as blood flow is diminished.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.