Abstract

BackgroundTick modulation of host defenses facilitates both blood feeding and pathogen transmission. Several tick species deviate host T cell responses toward a Th2 cytokine profile. The majority of studies of modulation of T cell cytokine expression by ticks were performed with lymphocytes from infested mice stimulated in vitro with polyclonal T cell activators. Those reports did not examine tick modulation of antigen specific responses. We report use of a transgenic T cell receptor (TCR) adoptive transfer model reactive with influenza hemagglutinin peptide (110-120) to examine CD4+ T cell intracellular cytokine responses during infestation with the metastriate tick, Dermacentor andersoni, or exposure to salivary gland extracts.ResultsInfestation with pathogen-free D. andersoni nymphs or administration of an intradermal injection of female or male tick salivary gland extract induced significant increases of IL-4 transcripts in skin and draining lymph nodes of BALB/c mice as measured by quantitative real-time RT-PCR. Furthermore, IL-10 transcripts were significantly increased in skin while IL-2 and IFN-γ transcripts were not significantly changed by tick feeding or intradermal injection of salivary gland proteins, suggesting a superimposed Th2 response. Infestation induced TCR transgenic CD4+ T cells to divide more frequently as measured by CFSE dilution, but more notably these CD4+ T cells also gained the capacity to express IL-4. Intracellular levels of IL-4 were significantly increased. A second infestation administered 14 days after a primary exposure to ticks resulted in partially reduced CFSE dilution with no change in IL-4 expression when compared to one exposure to ticks. Intradermal inoculation of salivary gland extracts from both male and female ticks also induced IL-4 expression.ConclusionThis is the first report of the influence of a metastriate tick on the cytokine profile of antigen specific CD4+ T cells. Blood feeding by D. andersoni pathogen-free nymphs or intradermal injection of salivary gland extracts programs influenza hemagglutinin influenza peptide specific TCR transgenic CD4+ T cells to express IL-4.

Highlights

  • Tick modulation of host defenses facilitates both blood feeding and pathogen transmission

  • Spleen and lymph node cells from 6.5 T cell receptor (TCR) transgenic mice were depleted of CD8+ cells using magnetic beads (Dynabeads, Invitrogen, Carlsbad, CA), and the remaining naïve Thy1.1+ 6.5 TCR transgenic CD4 T cells were labeled with CFSE immediately prior to adoptive transfer into recipients that had been exposed to tick feeding or salivary gland extract (SGE), and 200 μg intradermal injection of soluble HA peptide

  • Cytokine responses induced by D. andersoni nymphs or SGE To begin to characterize how the metastriate tick D. andersoni modulates host immune responses, we used quantitative real-time RT-PCR to measure cytokine expression at the cutaneous sites of tick feeding or salivary gland extract (SGE) injection as well as in the draining lymph nodes

Read more

Summary

Introduction

Tick modulation of host defenses facilitates both blood feeding and pathogen transmission. The majority of studies of modulation of T cell cytokine expression by ticks were performed with lymphocytes from infested mice stimulated in vitro with polyclonal T cell activators. Those reports did not examine tick modulation of antigen specific responses. Comparison of salivary gland transcriptomes of I. scapularis [6] and D. andersoni [7] revealed that they express similar broad categories of gene families whose members bear little resemblance to each other This finding suggests that different molecules, and perhaps distinct biological strategies, are used by these evolutionarily divergent tick species to converge on the same objective of successful blood feeding and pathogen transmission. Blood feeding ticks modulate host hemostasis, wound healing, extracellular matrix, and innate and adaptive immune responses [6,7,8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call