Abstract

Vascular grafts made of expanded polytetrafluoroethylene (ePTFE) are widely employed in vascular reconstructive surgery. While they are successful as replacements for large-diameter blood vessels, ePTFE vascular grafts are unsuitable for small-diameter ones because when the internal diameters of the graft are less than 6mm, they are found to fail without exception due to blood clot formation. To reduce platelets adhesion onto the ePTFE vascular graft, a novel method of binding of chitosan/heparin (CS/Hp) complex to the surface of vascular graft was developed. The binding of chitosan was achieved by irradiating with ultraviolet light the azide modified chitosan that was coated on the ePTFE surface. By forming complex with this coating of chitosan, heparin was then bonded to the ePTFE surface. In vitro blood compatibility experiments showed that CS/Hp surface-modified ePTFE vascular grafts exhibited markedly reduced platelets adhesion. The outstanding performance of these grafts was further demonstrated by the in vivo experiments, in which they were found to be still unclogged two weeks post-implantation into dog veins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.