Abstract

Chronic inflammatory processes are often associated with bone resorption. Stimulated by the current great interest in the role of coagulation factors in inflammation and immune injury, we have studied the effect of thrombin on mouse calvarial bones in vitro. Thrombin caused a dose-dependent (0.1–7 U/ml) stimulation of 45Ca release from neonatal mouse calvarial bones. Thrombin also stimulated the mobilization of stable calcium and inorganic phosphate, the release of 3H from [ 3H]proline-labelled calvaria, the production of lactate and the release of the lysosomal enzymes, β-glucuronidase and β- N-acetylglucosaminidase. Thrombin also enhanced 45Ca release from fetal rat long bones, although this bone resorption assay was less sensitive to thrombin than the mouse calvarial system. The bone resorption stimulatory activity of thrombin in mouse calvaria could be inhibited by calcitonin and an increased concentration of phosphate in the culture medium. Thrombin-induced 45Ca release in mouse calvaria was sensitive to inhibition by hydrocortisone and dexamethasone. By contrast, 45Ca release response to parathyroid hormone was insensitive to corticosteroids. The prostaglandin synthetase inhibitors indomethacin, meclofenamic and naproxen and 5,8,11,14-eicosatetraynoic acid reduced 45Ca release from thrombin-stimulated calvaria. However, significant stimulation by thrombin could be achieved also in bones treated with inhibitors of arachidonate metabolism. The results obtained suggest that thrombin can stimulate cell-mediated bone resorption by an osteoclast-dependent mechanism. The mechanism of action may involve both prostaglandin-dependent and prostaglandin-independent pathways. Our findings indicate that thrombin may contribute to the bone resorptive processes seen in periodontal diesease and rheumatoid arthritis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call