Abstract
Biological fluids can be considered to contain information-rich mixtures of biochemicals and particles that enable clinicians to accurately diagnose a wide range of pathologies. Rapid and inexpensive analysis of blood and other bodily fluids is a topic gaining substantial attention in both science and medicine. One line of development involves microfluidic approaches that provide unique advantages over entrenched technologies, including rapid analysis times, microliter sample and reagent volumes, potentially low cost, and practical portability. The present study focuses on the isolation and concentration of human blood cells from small-volume samples of diluted whole blood. Separation of cells from the matrix of whole blood was accomplished using constant potential insulator-based gradient dielectrophoresis in a converging, sawtooth-patterned microchannel. The channel design enabled the isolation and concentration of specific cell types by exploiting variations in their characteristic physical properties. The technique can operate with isotonic buffers, allowing capture of whole cells, and reproducible capture occurred at specific locales within the channel over a global applied voltage range of 200-700 V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.