Abstract
Glioblastoma (GBM) is a common malignant tumor in brain, and the treatment is still a challenge owing to the high invasiveness and the existence of blood-brain barrier (BBB). Although temozolomide (TMZ) is the first line medication, its efficacy is not ideal, which is related to the defect of dose distribution and drug resistance. It is urgent to develop a novel BBB-permeable nanoagent with multiple therapeutic modalities for improving the treatment effect of GBM. In this work, we constructed an intelligent BBB-permeable nanoplatform (CTHG-Lf NPs) with hollow mesoporous copper sulfide nanoparticles (HM-CuS NPs) as temozolomide (TMZ) carrier and hyaluronic acid (HA) as gatekeeper, as well as further modification with glucose oxidase (GOx) and lactoferrin (Lf) for highly efficient synergistic therapy of orthotopic GBM. The modification of Lf endows CTHG-Lf NPs with good target and BBB-permeable ability. HA not only prevents the TMZ leakage during circulation, but also achieves responsive drug release at tumor site for effective chemotherapy (CT). GOx provides high hydrogen peroxide (H2O2) and gluconic acid for improving the treatment effect of chemodynamic therapy (CDT), and realizes the starvation therapy (ST) by consuming glucose. The good photothermal effect of CTHG-Lf NPs achieves the “mild” photothermal therapy (PTT), while enhancing the efficiency of Fenton-like reaction. The synergistic strategy with CT/CDT/PTT/ST can not only promote brain drug delivery, but also realize the combination of multiple mechanisms for effective tumor growth suppression in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.