Abstract
To understand the mechanism by which green tea lowers the risk of dementia, focus was placed on the metabolites of epigallocatechin gallate (EGCG), the most abundant catechin in green tea. Much of orally ingested EGCG is hydrolyzed to epigallocatechin (EGC) and gallic acid. In rats, EGC is then metabolized mainly to 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5) and its conjugated forms, which are distributed to various tissues. Therefore, we examined the permeability of these metabolites into the blood-brain barrier (BBB) and nerve cell proliferation/differentiation in vitro. The permeability of EGC-M5, glucuronide, and the sulfate of EGC-M5, pyrogallol, as well as its glucuronide into the BBB were examined using a BBB model kit. Each brain- and blood-side sample was subjected to liquid chromatography tandem-mass spectrometry analysis. BBB permeability (%, in 0.5h) was 1.9-3.7%. In human neuroblastoma SH-SY5Y cells, neurite length was significantly prolonged by EGC-M5, and the number of neurites was increased significantly by all metabolites examined. The permeability of EGC-M5 and its conjugated forms into the BBB suggests that they reached the brain parenchyma. In addition, the ability of EGC-M5 to affect nerve cell proliferation and neuritogenesis suggests that EGC-M5 may promote neurogenesis in the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.