Abstract

The pathophysiological features of ischemia-related blood–brain barrier (BBB) disruption are widely studied using preclinical stroke models. However, in many of these models, craniectomy is required to confirm arterial occlusion via laser Doppler flowmetry or to enable direct ligation of the cerebral artery. In the present study, mice were used to construct a distal middle cerebral artery occlusion (dMCAO) model, a preclinical stroke model that requires craniectomy to enable direct ligation of the cerebral artery, or were subjected to craniectomy alone. dMCAO but not craniectomy caused neurodegeneration and cerebral infarction, but both procedures induced an appreciable increase in BBB permeability to Evans blue dye, fluorescein, and endogenous albumin but not to 10 kDa dextran-FITC, leading to cerebral edema. Using rats, we further showed that BBB disruption induced by craniectomy with no evidence of dural tearing was comparable to that induced by craniectomy involving tearing of the dura. In conclusion, our data demonstrated that craniectomy can be a major contributor to BBB disruption and cerebral edema in preclinical stroke models. The implications of this experimental artifact for translational stroke research and preclinical data interpretation are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.