Abstract

Disruptions of the blood-brain barrier (BBB) and edema formation both play key roles in the development of neurological dysfunction in acute and chronic cerebral ischemia. Animal studies have revealed the molecular cascades that are initiated with hypoxia/ischemia in the cells forming the neurovascular unit and that contribute to cell death. Matrix metalloproteinases cause reversible degradation of tight junction proteins early after the onset of ischemia, and a delayed secondary opening during a neuroinflammatory response occurring from 24 to 72 hours after. Cyclooxygenases are important in the delayed opening as the neuroinflammatory response progresses. An early opening of the BBB within the 3-hour therapeutic window for tissue-type plasminogen activator can allow it to enter the brain and increase the risk of hemorrhage. Chronic hypoxic hypoperfusion opens the BBB, which contributes to the cognitive changes seen with lacunar strokes and white matter injury in subcortical ischemic vascular disease. This review will describe the molecular and cellular events associated with BBB disruption and potential therapies directed toward restoring the integrity of the neurovascular unit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.