Abstract

Oxidative stress is the process by which reactive molecules and free radicals are formed in cells. In this study, we report the blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue inchronic hepatitis C (CHC) patients by using real-time PCR. A total of 144 untreated patients diagnosed with CHC having genotype 3a and 20 healthy controls were selected for the present study. Liver biopsy staging and grading of CHC patients were performed using the METAVIR score. Total RNA was extracted from liver tissue and blood samples, followed by cDNA synthesis and real-time PCR. The relative expression of genes was calculated using the ΔΔCt method. The expression profile of 84 genes associated with oxidative stress and antioxidants was determined in liver tissue and blood samples. In liver tissue, 46 differentially expressed genes (upregulated, 27; downregulated, 19) were identified in CHC patients compared to normal samples. In blood, 61 genes (upregulated, 51; downregulated; 10) were significantly expressed in CHC patients. A comparison of gene expression in liver and whole blood showed that 20 genes were expressed in a similar manner in the liver and blood. The expression levels of commonly expressed liver and blood-based genes were also correlated with clinical factors in CHC patients. A receiver operating curve (ROC) analysis of oxidative stress genes (ALB, CAT, DHCR24, GPX7, PRDX5, and MBL2) showed that infections in patients with CHC can be distinguished from healthy controls. In conclusion, blood-based gene expression can reflect the behavior of oxidative stress genes in liver tissue, and this blood-based gene expression study in CHC patients explores new blood-based non-invasive biomarkers that represent liver damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call