Abstract
For a suitable small category F of homomorphisms between finite groups, we introduce two subcategories of the biset category, namely, the deflation Mackey category MF← and the inflation Mackey category MF→. Let G be the subcategory of F consisting of the injective homomorphisms. We shall show that, for a field K of characteristic zero, the K-linear category KMG=KMG←=KMG→ has a semisimplicity property and, in particular, every block of KMG owns a unique simple functor up to isomorphism. On the other hand, we shall show that, when F is equivalent to the category of finite groups, the K-linear categories KMF← and KMF→ each have a unique block.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.