Abstract

City modeling is the foundation for computational urban planning, navigation, and entertainment. In this work, we present the first generative model of city blocks named BlockPlanner, and showcase its ability to synthesize valid city blocks with varying land lots configurations. We propose a novel vectorized city block representation utilizing a ring topology and a two-tier graph to capture the global and local structures of a city block. Each land lot is abstracted into a vector representation covering both its 3D geometry and land use semantics. Such vectorized representation enables us to deploy a lightweight network to capture the underlying distribution of land lots configurations in a city block. To enforce intrinsic spatial constraints of a valid city block, a set of effective loss functions are imposed to shape rational results. We contribute a pilot city block dataset to demonstrate the effectiveness and efficiency of our representation and framework over the state-of-the-art. Notably, our BlockPlanner is also able to edit and manipulate city blocks, enabling several useful applications, e.g., topology refinement and footprint generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.