Abstract
We investigate approaches to support effective and efficient retrieval of image data based on content. We first introduce an effective block-oriented image decomposition structure which can be used to represent image content in image database systems. We then discuss the application of this image data model to content-based image retrieval. Using wavelet transforms to extract image features, significant content features can be extracted from image data through decorrelating the data in their pixel format into the frequency domain. Feature vectors of images can then be constructed. Content-based image retrieval is performed by comparing the feature vectors of the query image and the decomposed segments in database images. Our experimental analysis illustrates that the proposed block-oriented image representation offers a novel decomposition structure to be used to facilitate effective and efficient image retrieval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.