Abstract
The exponential increase in computation and memory complexity with the depth of network has become the main impediment to the successful application of graph neural networks (GNNs) on large-scale graphs like graphs with hundreds of millions of nodes. In this paper, we propose a novel neighbor sampling strategy, dubbed blocking-based neighbor sampling (BNS), for efficient training of GNNs on large-scale graphs. Specifically, BNS adopts a policy to stochastically block the ongoing expansion of neighboring nodes, which can reduce the rate of the exponential increase in computation and memory complexity of GNNs. Furthermore, a reweighted policy is applied to graph convolution, to adjust the contribution of blocked and non-blocked neighbors to central nodes. We theoretically prove that BNS provides an unbiased estimation for the original graph convolution operation. Extensive experiments on three benchmark datasets show that, on large-scale graphs, BNS is 2X~5X faster than state-of-the-art methods when achieving the same accuracy. Moreover, even on the small-scale graphs, BNS also demonstrates the advantage of low time cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.