Abstract

The extracellular bloodstream form parasite Trypanosoma brucei is supremely adapted to escape the host innate and adaptive immune system. Evasion is mediated through an antigenically variable Variant Surface Glycoprotein (VSG) coat, which is recycled at extraordinarily high rates. Blocking VSG synthesis triggers a precytokinesis arrest where stalled cells persist for days in vitro with superficially intact VSG coats, but are rapidly cleared within hours in mice. We therefore investigated the role of VSG synthesis in trypanosome phagocytosis by activated mouse macrophages. T. brucei normally effectively evades macrophages, and induction of VSG RNAi resulted in little change in phagocytosis of the arrested cells. Halting VSG synthesis resulted in stalled cells which swam directionally rather than tumbling, with a significant increase in swim velocity. This is possibly a consequence of increased rigidity of the cells due to a restricted surface coat in the absence of VSG synthesis. However if VSG RNAi was induced in the presence of anti-VSG221 antibodies, phagocytosis increased significantly. Blocking VSG synthesis resulted in reduced clearance of anti-VSG antibodies from the trypanosome surface, possibly as a consequence of the changed motility. This was particularly marked in cells in the G2/ M cell cycle stage, where the half-life of anti-VSG antibody increased from 39.3 ± 4.2 seconds to 99.2 ± 15.9 seconds after induction of VSG RNAi. The rates of internalisation of bulk surface VSG, or endocytic markers like transferrin, tomato lectin or dextran were not significantly affected by the VSG synthesis block. Efficient elimination of anti-VSG-antibody complexes from the trypanosome cell surface is therefore essential for trypanosome evasion of macrophages. These experiments highlight the essentiality of high rates of VSG recycling for the rapid removal of host opsonins from the parasite surface, and identify this process as a key parasite virulence factor during a chronic infection.

Highlights

  • The African trypanosome Trypanosoma brucei is a unicellular parasite uniquely adapted to parasitize the mammalian bloodstream after inoculation by tsetse flies

  • Bloodstream form African trypanosomes infect the mammalian bloodstream as extracellular parasites, where they excel at escaping the immune system including elimination by macrophages

  • Key for survival is a dense Variant Surface Glycoprotein (VSG) coat which is antigenically varied, and which is recycled from the cell surface at very high rates

Read more

Summary

Introduction

The African trypanosome Trypanosoma brucei is a unicellular parasite uniquely adapted to parasitize the mammalian bloodstream after inoculation by tsetse flies. T. brucei establishes chronic infections leading to devastating diseases such as Human African Trypanosomiasis (HAT) or ‘nagana’ in livestock. T. brucei can infect a broad range of African mammals, which tolerate low grades of trypanosome infection and serve as reservoirs for disease [1, 2]. As an extracellular pathogen T. brucei is confronted with continuous attack from the innate and adaptive arms of the host immune system. These include the complement system, antibodies and phagocytic cells such as macrophages. An essential trypanosome survival feature within this hostile environment, is a protective coat of Variant Surface Glycoprotein (VSG) [3, 4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call