Abstract

Programmed death ligand-1 (PD-L1) is involved in the negative regulation of immune responses in a variety of diseases. We evaluated the contribution of PD-L1 to the activation of immune cells that promote atherosclerotic lesion formation and inflammation. Compared to ApoE-/- mice that were provided a high-cholesterol diet in combination with anti-PD-L1 antibody developed a larger lipid burden with more abundant CD8+ T cells. The anti-PD-L1 antibody increased the abundance of CD3+PD-1+, CD8 + PD-1+,CD3+IFN-γ+ and CD8+IFN-γ+ T cell under high-cholesterol diet, as well as the serum tumor necrosis factor-α (TNF-a), IFN-γ, PF, GNLY, Gzms B and LTA. Interestingly, the anti-PD-L1 antibody increased the serum level of sPD-L1. In vitro, blocking of PD-L1 on the surface of mouse aortic endothelial cells with anti-PD-L1 antibody stimulated the activation and secretion of cytokines, including IFN-γ, PF, GNLY, Gzms B and LTA, from cytolytic CD8+IFN-γ+ T cell. However, the concentration of sPD-L1 was lower after treatment of the MAECs with anti-PD-L1 antibody. Our findings highlighted that blocking of PD-L1 promoted up-regulation of CD8 + IFN-γ + T cell-mediated immune responses, leading to the secretion of inflammatory cytokine that exacerbated the atherosclerotic burden and promoted inflammation. However, further studies are needed to gain insight into whether PD-L1 activation could be a novel immunotherapy strategy for atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call