Abstract

BackgroundAmino acids are not only the main form of N in rice, but also are vital for its growth and development. These processes are facilitated by amino acid transporters within the plant. Despite their significance, only a few AAP amino acid transporters have been reported.ResultsIn this study, we observed that there were differences in the expression of amino acid transporter OsAAP7 among 521 wild cultivated rice varieties, and it directly negatively correlated with tillering and grain yield per plant. We revealed that OsAAP7 protein was localized to the endoplasmic reticulum and had absorption and transport affinity for amino acids such as phenylalanine (Phe), lysine (Lys), leucine (Leu), and arginine (Arg) using subcellular localization, yeast substrate testing, fluorescent amino acid uptake, and amino acid content determination. Further hydroponic studies showed that exogenous application of amino acids Phe, Lys and Arg inhibited the growth of axillary buds in the overexpression lines, and promoted the elongation of axillary buds in the mutant lines. Finally, RNA-seq analysis showed that the expression patterns of genes related to nitrogen, auxin and cytokinin pathways were changed in axillary buds of OsAAP7 transgenic plants.ConclusionsThis study revealed the gene function of OsAAP7, and found that blocking of amino acid transporter OsAAP7 with CRISPR/Cas9 technology promoted tillering and yield by determining basic and neutral amino acids accumulation in rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call