Abstract

Background/Aims: Prior studies demonstrate that hypoxia inducible factor subtype 1α (HIF-1α) in retinal tissues is involved in development of diabetic retinopathy (DR). In this report, we particularly examined the role played by mammalian target of rapamycin (mTOR) in regulating expression of HIF-1α and its downstream pathway, namely vascular endothelial growth factor (VEGF). Methods: Streptozotocin (STZ) was systemically injected to induce hyperglycemia in rats. ELISA and Western Blot analysis were employed to determine the levels of HIF-1α and VEGF as well as expression of mTOR pathways in retinal tissues of control rats and STZ rats. Results: Our results show that HIF-1α and VEGF as well as VEGF receptor subtype 2 (VEGFR-2) were increased in STZ rats. Also, the protein expression of p-mTOR, mTOR-mediated phosphorylation of 4E-binding protein 4 (4E-BP1), p70 ribosomal S6 protein kinase 1 (S6K1) pathways were amplified in diabetic retina compared with controls. Blocking mTOR by using rapamycin significantly attenuated activities of HIF-1α and VEGF signaling pathways. Conclusion: Our data for the first time revealed specific signaling pathways engaged in the development of DR, including the activation of mTOR and HIF-1α -VEGF mechanism. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of DR often observed in clinics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.