Abstract

To efficiently perform large matrix LU decomposition on FPGAs with limited local memory, the original algorithm needs to be blocked. In this paper, we propose a block LU decomposition algorithm for FPGAs, which is applicable for matrices of arbitrary size. We introduce a high performance hardware design, which mainly consists of a linear array of processing elements (PEs), to implement our block LU decomposition algorithm. A total of 36 PEs can be integrated into a Xilinx Virtex-5 xc5vlx330 FPGA on our self-designed PCI-Express card, reaching a sustained performance of 8.50 GFLOPS at 133 MHz, which outperforms previous work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.