Abstract

BackgroundChronic hyperammonemia induces neuroinflammation in cerebellum, with glial activation and enhanced activation of the TNFR1-NF-kB-glutaminase-glutamate-GABA pathway. Hyperammonemia also increases glycinergic neurotransmission. These alterations contribute to cognitive and motor impairment. Activation of glycine receptors is reduced by extracellular cGMP, which levels are reduced in cerebellum of hyperammonemic rats in vivo.We hypothesized that enhanced glycinergic neurotransmission in hyperammonemic rats (1) contributes to induce neuroinflammation and glutamatergic and GABAergic neurotransmission alterations; (2) is a consequence of the reduced extracellular cGMP levels. The aims were to assess, in cerebellum of hyperammonemic rats, (a) whether blocking glycine receptors with the antagonist strychnine reduces neuroinflammation; (b) the cellular localization of glycine receptor; (c) the effects of blocking glycine receptors on the TNFR1-NF-kB-glutaminase-glutamate-GABA pathway and microglia activation; (d) whether adding extracellular cGMP reproduces the effects of strychnine.MethodsWe analyzed in freshly isolated cerebellar slices from control or hyperammonemic rats the effects of strychnine on activation of microglia and astrocytes, the content of TNFa and IL1b, the surface expression of ADAM17, TNFR1 and transporters, the phosphorylation levels of ERK, p38 and ADAM17. The cellular localization of glycine receptor was assessed by immunofluorescence. We analyzed the content of TNFa, IL1b, HMGB1, glutaminase, and the level of TNF-a mRNA and NF-κB in Purkinje neurons. Extracellular concentrations of glutamate and GABA were performed by in vivo microdialysis in cerebellum. We tested whether extracellular cGMP reproduces the effects of strychnine in ex vivo cerebellar slices.ResultsGlycine receptors are expressed mainly in Purkinje cells. In hyperammonemic rats, enhanced glycinergic neurotransmission leads to reduced membrane expression of ADAM17, resulting in increased surface expression and activation of TNFR1 and of the associated NF-kB pathway. This increases the expression in Purkinje neurons of TNFa, IL-1b, HMGB1, and glutaminase. Increased glutaminase activity leads to increased extracellular glutamate, which increases extracellular GABA. Increased extracellular glutamate and HMGB1 potentiate microglial activation. Blocking glycine receptors with strychnine or extracellular cGMP completely prevents the above pathway in hyperammonemic rats.ConclusionsGlycinergic neurotransmission modulates neuroinflammation. Enhanced glycinergic neurotransmission in hyperammonemia would be due to reduced extracellular cGMP. These results shed some light on possible new therapeutic target pathways for pathologies associated to neuroinflammation.

Highlights

  • Chronic hyperammonemia induces neuroinflammation in cerebellum, with glial activation and enhanced activation of the TNFα receptor 1 (TNFR1)-NF-kB-glutaminase-glutamate-γ-aminobutyric acid (GABA) pathway

  • Based on the above data, we propose the hypotheses that in chronic hyperammonemia increased activation of glycine receptors may contribute to neuroinflammation, including activation of microglia and astrocytes, and to increased membrane expression of TNFR1 and activation of the associated signal transduction pathway, leading to increased levels of extracellular glutamate and GABA

  • Blocking glycine receptor reduces astrocytes and microglia activation in the cerebellum of hyperammonemic rats It has been shown that hyperammonemia enhances glycinergic neurotransmission in the cerebellum in vivo

Read more

Summary

Introduction

Chronic hyperammonemia induces neuroinflammation in cerebellum, with glial activation and enhanced activation of the TNFR1-NF-kB-glutaminase-glutamate-GABA pathway. Chronic hyperammonemia induces neuroinflammation which alters glutamatergic and GABAergic neurotransmission in cerebellum and hippocampus leading to cognitive and motor impairment [1,2,3,4,5,6,7,8]. Hyperammonemic rats show neuroinflammation in cerebellum, with microglia and astrocytes activation and increased content of TNFa (tumor necrosis factor alpha) and membrane expression of the TNFα receptor 1 (TNFR1). This is associated with increased nuclear factor kappa B (NF-κB), leading to increased glutaminase levels, which increases glutamate formation and its extracellular concentration. As far as we know the effects of glycinergic neurotransmission on neuroinflammation have not been studied

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call