Abstract

A recent focus on the land-sparse and data-sparse Southern Hemisphere (SH) has begun to fill critical gaps in our observational record of past climates identified by the paleoclimate research community (Jansen et al., 2007). This thrust is providing balance to Northern Hemisphere (NH) reconstructions, and is facilitating linkages between archives from the tropics through to Antarctica. Underscoring the usefulness of Australasian mid-latitude climate reconstructions are newly emerging perspectives about past extremes and mean climate state changes for the region. These new views are supplementing the general understanding of natural climate variability ranges prior to land-based instrumental records (typically less than 150 years coverage), and are expanding knowledge about tropically-based climate phenomena (El Nino-Southern Oscillation (ENSO), Interdecadal Pacific Oscillation (IPO), Indian Ocean Dipole, the Madden-Julian Oscillation, Australasian monsoon and the South Pacific Convergence Zone (SPCZ)) and other key extra-tropical components of the global climate system (e.g., the Antarctic Circumpolar Current (AAC), the Southern Annular Mode (SAM), and the mid-latitude westerlies). Regional paleoclimate reconstructions in Australasia are being undertaken to increase natural climate variability understanding, leading to more robust validation of global climate models and improved model selection for future scenario-building. This approach is feeding into improved formulation of scenarios that are guiding mitigation and climate change adaptation strategies for Australia, New Zealand, and the small island nations of the Southwest Pacific. Observed patterns in multi-proxy paleoclimate syntheses are currently being compared to broad-scale circulation outputs from paleoclimate models (i.e., Paleoclimate Modelling Intercomparison Project (PMIP)), which will verify how well some climate models perform for the Australasian region. A key time span includes the last 2000 years, which contains the Medieval Climate Anomaly (MCA). The MCA expression in Australasia is particularly relevant to study because this period is considered as a key analogue to a future warmer-thanpresent world.

Highlights

  • Regional paleoclimate reconstructions in Australasia are being undertaken to increase natural climate variability understanding, leading to more robust validation of global climate models and improved model selection for future scenario-building

  • Observed patterns in multi-proxy paleoclimate syntheses are currently being compared to broad-scale circulation outputs from paleoclimate models (i.e., Paleoclimate Modelling Intercomparison Project (PMIP)), which will verify how well some climate models perform for the Australasian region

  • This approach has been a boon for directly comparing proxies that are sensitive to atmospheric circulation changes and paleoclimate model outputs that lack sufficient locally downscaled precipitation or temperature results (e.g., PMIP), opening a new avenue for climate model testing and validation

Read more

Summary

Approaches to integrating proxies

For New Zealand, a paleoclimate proxy integration approach called Regional Climate Regime Classification (RCRC) is being used to link paleoclimate time slices to modern circulation analogues (Lorrey et al, 2007, 2008). Inferences about past atmospheric pressure patterns made from RCRC time slices provide a qualitative “upscaling” that can complement limited downscaled paleoclimate model information. This approach has been a boon for directly comparing proxies that are sensitive to atmospheric circulation changes and paleoclimate model outputs that lack sufficient locally downscaled precipitation or temperature results (e.g., PMIP), opening a new avenue for climate model testing and validation. Careful interpretations of the records within a regionally-comprehensive network have meant multi-centennial approximations of past circulation patterns are possible using the two aforementioned approaches

Regional synoptic circulation reconstructions for the MCA
Variability and drivers during the Polynesian Warm Period
Regional indicator decision
Climate during the Medieval Climate Anomaly in China
Regional reconstructions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.