Abstract

Ras proteins play fundamental roles in cell signal transduction pathways that regulate cell growth, differentiation, proliferation, and survival. ras mutations are among the most frequently encountered genetic abnormalities in human cancers and play a key role in tumorigenesis. The enzymatic attachment of a 15- or 20-carbon moiety to the Ras protein through farnesylation or geranylgeranylation, respectively, is a required step in the proper localization and activation of Ras. Inhibition of the catalytic enzymes, farnesyl transferase and geranylgeranyl transferase, is a novel, mechanism-based, targeted approach to cancer therapy development. Geranylgeranyl transferase inhibitors suppress tumor growth by accumulating cells in the G(1)/S cell cycle phase. One mechanism by which farnesyl transferase inhibitors suppress tumor growth is by inhibiting bipolar spindle formation, thereby blocking progression from prophase to metaphase. Although the exact molecular target responsible for the antitumor activity of farnesyl transferase inhibitors is unclear, at least in some tumor cells, inhibition of phosphoinositide-3-OH kinase/Akt-mediated cell survival pathways may play a critical role. Identifying the farnesylated proteins that are targeted by farnesyl transferase inhibitors and the tumor molecular signatures that dictate which set of patients will respond to farnesyl transferase inhibitors are critical end points for future mechanistic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.