Abstract

There has been an increasing trend of moving computing activities closer to the edge of the network, particularly in smart city applications (e.g., vehicle-to-everything – V2X). Such a paradigm allows the end user’s requests to be handled/processed by nodes at the edge of the network; thus, reducing latency, and preserving privacy of user data/activities. However, there are a number of challenges in such an edge computing ecosystem. Examples include (1) potential inappropriate utilization of resources at the edge nodes, (2) operational challenges in cache management and data integrity due to data migration between edge nodes, particularly when dealing with vehicular mobility in a V2X application, and (3) high energy consumption due to continuous link breakage and subsequent reestablishment of link(s). Therefore in this paper, we design a blockchain-based secure data processing framework for an edge envisioned V2X environment (hereafter referred to as BloCkEd ). Specifically, a multi-layered edge-enabled V2X system model for BloCkEd is presented, which includes the formulation of a multi-objective optimization problem. In addition, BloCkEd comprises an optimal container-based data processing scheme, and a blockchain-based data integrity management scheme, designed to minimize link breakage and reducing latency. Using Chandigarh City, India, as the scenario, we implement and evaluate the proposed approach in terms of its latency, energy consumption, and service level agreement compliance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.